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2
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1. Introduction

Not infrequently, the decision-making process goes something

like this: there iS first given some sort of initiating problem or

goal. This leads to exploration, or search, for possible solutions.

As various possibilities are discovered, they are evaluated tentatively

and some idea of their worth as solutions to the initiating problem is

obtained. On this basis, it may be decided to accept a certain possibility

without further consideration, or it may be decided to evaluate a certain

possibility more carefully, that is, to experiment or test, or, it may be

decided to seek other possibilities, that is, to continue exploring.

However, after varying amounts of exploration alternating with various

amounts of evaluation, an acceptable possibility is eventually located

and the process is stopped) at least as regards the particular problem

at hand.

In this paper,, we present a mat1ematical model for decision

making as v redin-h-ight,-i.e-, a more or less sequential

process which involves constant alternation between exploratory and

evaluative operations until a satisfactory possibility is located. We

Supported in part under a grant from the Ford Foundation and in p
under ONR grant Nonr (233)75.
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then describe the theoretical optimal behavior in the context of the

model. The optimal behavior is of possible normative interest, and is

of use in experimental studies of decision making where it is desirable

to compare actual behavior with various kinds of theoretical decision

rules.

The features of decision making and behavior in general noted

above have been described by a number of writers. Among others,

E. C. Tolman, John Dewey, and H. A. Simon have paid special attention

to the activity of arriving at a course of action through active explora-

tion and evaluation, and more or less formal models relevant to this kind

of phenomena have been described by several persons, e.g., Stigler (8),

Ashby(l), and Toda(9), as well as Simon(7). The model described here

supplements this work by making possible explicit description of the

optimal balancing of exploratory and evaluative activity within a well-

defined context. We give up a certain amount of the generality inherent

in some of the above models in order to gain a measure of precision.

It is possible to give many instances of group and individual

behavioral sequences, of the general sort alluded to above, in which

decisions vis-a-vis exploratory and evaluational activities play a central

role. These decisions appear to permeate human experience and behavior, and

it seems likely that differences in policy with respect to such decisions,

often operating in an intuitive and unconsidered fashion, lie at the basis

of important differences in individual and organizational performance. For

this reason alone, it seems worthwhile to attempt to obtain an explicit

and thorough understanding of the problem under various sets of limited

conditions such as are considered here.
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Section 2 below describes the formal model and Section 3

presents the mathematical results characterizing the optimal policy.

The main result is that the solutions to certain given systems of

equations uniquely characterize the optimal policy. The proofs of these

results, which are not difficult, are given in Section 4.

In Section 5, the model is applied to the case where it is

desired to carry on many "search and evaluation" processes of the same

sort, subject to a constraint on the total expenditure for conducting

all of them. This version of the model may be of value in practical

selection problems where many objects must be picked out. Section 6

points out some aspects of the problem of obtaining numerical solutions

when the distributions governing the search and evaluation process have

the form of the joint normal.

2. The Model

Let (Xl, Y 1,V1),(X2 ,Y 2 ,V2 ),... be a sequence of independent,

real-valued triples, with known, common joint distribution H. The decision

maker first pays an amount cS > 0, called the search cost, which gives

him an opportunity to choose a possibility whose worth is given by V1 .

However, the decision maker is told only X1 , which, because of the joint

distribution H, gives him some information about V1 . At this point he may

either stop, taking V 1 as his reward, continue, in which case he has a

chance at V2 and learns X 2, or take an action referred to as a test,

which costs cT > 0 and enables him to learn Yl, thus gaining more infor-

mation about V1 . In the latter case, having observed Ylp again he may

stop, receiving V1 , or continue, getting a chance at V2 and learning X 2,

still at a cost cS . However, this entails permanent loss of the option of
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taking VI, as does the decision to continue directly after observing XI .

Once X2  is observed, these same possibilities are available, and so on.

Thus, after continuing n times, X is known and the deicion maker cann

stop, taking Vn, continue on to learn Xn+l, or test, observing Yn, and

then again either stop with V or continue. Continuing always results inn

loss of option. The cost* of continuing is always cS and the cost of a

test is always cT* The problem is, when to continue, when to test, and

when to stop, in order to maximize the expected net return.

If the opportunity to test is eliminated, the resulting

problem is essentially identical to one mentioned illustratively by

MacQueen and Miller(6 ) and Chow and Robbins(3), except that these writers

permitted the decision maker to return to an earlier opportunity if he

desired. However, the option of returning to an earlier possibility is

never used, and a little consideration shows that our model is not com-

plicated in any important way by permitting complete option. Because

of the independence and the fact that H, cs, and cT are known and

constant, the expectation about the future is constant. If the optimal

future is good enough to lead one to pass up an opportunity to test, or

having tested, an opportunity to stop, it will always be so. Thus,

options on these opportunities will never be used.

The analysis is based heavily on the apriori distribution of the

outcome of testing and then stopping given the information X; that is,

*We can interpret the search cost c, as including a certain amount of
expense entailed in acquiring the p'reliminary information X, as well
as the cost of producing the possibility.
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the distribution of Z = E(VIXY) when X is known. This distribution,

which may be obtained from H, is represented by F(zlx) = P[Z < zlX=x].

We suppose that Z has a density f(zlx) for each x and that x

itself has a density f(x). The distribution function of X is F(x).

We assume that f(zlx) and f(x) are positive for all z, and all x,
oo 00

and that E(V)= f fzf(zlx)dzf(x)dx exists and is finite. Further-

more, F(zlx) is assumed to be differentiable with respect to x uni-

formly in z.

The above assumptions are more or less regularity assumptions,

which enable certain mathematical tools to be applied. More important,

we will require F(zlx) to satisfy the following two conditions:

0, /.lxF(zlx) < 0, and C2, E(VIX = X) zf(zlx)dz -+ - as

x - + -, and there exist functions cy, , with a(x) - co as x -9 c

and P(x) - - - as x - - -, such that for arbitrary positive 6i,

i = 1,2,3,4, and all x sufficiently large,

(la) F(ae(x) I x) 5 81 and j f(zlx)dz < 62 ,

while for all x sufficiently small,
cc

(1b) 1 - F(P(x)jx) :5 63 and fSlzlf(zlx)dz < 6 4.
When C obtains, we will say F(zlx) is stochastically

ordered in x. For some pertinent remarks on this concept, see Karlin

(3, p.234) and Lehmann(4,p. 73). The condition is satisfied for many

families or distributions, including the normal and any family in which

x corresponds to a location parameter; that is, where F(zlx) = G(z-x)

3 1n fact, for purposes of determining the optimal policy, the random variables
Y and V can be dispensed with altogether, and the treatment be based on Z
and X alone, or, as is done in Section 3, on Z and the random variable
E(VIX). However, in the psychological studies of decision making for which
this model was devised, the subject may be required to learn the relation be-
tween the random variables or "cues" Y and X, and the random outcome V,
and it is convenient to have the model formulated in these terms.
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for some fixed distribution G.

Condition C2 is a mathematically convenient way of insuring

that the mass in F(zlx) follows the mean in a certain sense. Roughly

speaking, the condition implies that for a given possibility) if the infor-

mation X = x is sufficiently favorable, testing is not likely to disclose

that in actuality the possibility is poor, and if the information is suf-

ficiently unfavorable, testing is not likely to disclose that the possibility

is actually good. The mathematical function of this condition is seen

explicitly in the proof of Lemma 2 below.

We assume there exists an optimal stationary policy, that is, a

policy which depends only on the variable information available at each

stage, X after continuing, or (X,Y) after testing, and which in fact

achieves the least upper bound, assumed finite, with respect to the class

of all policies. With this assumption in mind, the term optimal is here-

after used to refer to optimal stationary policies.

When CI and C2 hold, and cT is positive, the optimal

policy takes a particularly simple form. For certain constants, v*,x*,y*,

and x°, either, (i) continue for X < x*, and test for x* <X < y*,

and stop without testing for X > y*, and stop or continue after testing

depending on whether or not Z > v*, or (ii) never test and either continue

or stop depending on whether X < x ° or X > x° . A criterion is given for

determining whether or not the optimal policy takes the form (i) or (ii),

and equations characterizing the optimal constants v*,x*,y*, and x ° are

given.

In the above and throughout the following, a policy is described
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in the permissive sense by the largest intervals in which each of the

various decisions are allowed under the policy. Whenever a given value

of X, or Z, as the case may be, belongs to two such intervals either

of the corresponding decisions are permitted. In some cases, a value of

X might belong to three intervals, in which case all three of the

decisions would be permitted. With this interpretation in mind, we can

say the optimal policy is unique, for the various constants v*,x*, etc.

are uniquely determined.

The method of analysis used here under conditions C1 and C2

may be extended to the case where C2  is dropped, although some care

must be used to determine the form of the optimal policy. Because of

C1 there are essentially only five qualitatively distinct kinds of

policies: Never test, always test, test for all values of X above some

point, test for all values of X below some point, or test only for values

of X in an intermediate range. As will be seen below, once the form of

the optimal policy is known, explicit equations are easily written for the

boundaries of the various intervals. Use of C2  is one way of narrowing

these possibilities down to a fairly interesting case; i.e., where there

is either testing in an intermediate range or no testing at all.

Without C1 , the situation becomes much more complicated. It

is now possible to have F(zlx) have as much variability as desired for

any given range of values of x. Thus, the potential payoff for testing,

which roughly speaking depends on this variability, can be very high or

low anywhere, and the convenient structure described above cannot be

expected to obtain.
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3. The Optimal Policy

Let v* be the expected return from continuing and using the

optimal policy thereafter and consider the expressions:

(2) T(xv*) -v*F(v*Ix) + j zf(zlx)dz-c,

(3) R =x) = zf(z x) E(VIX x)

The function R(x) gives the expected return for stopping without test-

ing when for the possibility at hand X--x. The function T(xv*) gives

the expected return for testing when X--x and proceeding optimally there-

after. This is because after testing, which costs cT, with probability

F(v*lx), it will turn out that z < v*, and it will be optimal to continue,

which achieves v*, hence the term v*F(v*lx), and if z > v*, it will

be optimal to stop, which has expectation z, hence the term fv zf(zlx)dz.

I f v* were known, the optimal policy after testing would thus be clear,

and after continuing the optimal policy could be determined from compar-

ison of v*, R(x) and T(x,v*), which for X=x give the returns for

the three possible decisions on the assumption that an optimal policy is

to be pursued in the future. Selection of the better from among these

decisions would thus determine the optimal policy. (We are employing the

principle of optimality (2) here.) It remains, then, to determine v*

and show that the optimal policy has the form described in Section 2.

Under C and C2, R(x) is monotone in x and has the domain

(uo ,o). Consequently, we can work with the entirely equivalent random

variable R which has value R(x) when X-x. This is convenient since
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then E(VIR=r) = r. Define x(r) by the relation r = R(x(r)) and let

Fl(r) = F(x(r)) = PER < r] and let F1(zlr) = F(zlx(r)) = P[Z < zIR=r].

These distributions have corresponding positive densities fl(r) and

fl(zjr). Conditions C1 and C2  carry over to the new variable R.

hus if C1 holds, /2rF(zjr) < 0 and if C2 holds in terms of x,

it will also hold in terms of r with x replaced by x(r) in a(x)

and P(x), and f(zlx) replaced by fl(zlr). In these terms, the

expected return for testing when R=r and using the optimal policy

thereafter, becomes

(3a) Tl(rv*) = v*F,(v-*Ir) + f (zIr)dz-c

Clearly, T1(r,v) is continuous and differentiable in both r and v.

We will make use of several easy lemmas whose proofs are given

in Section 4. The main point of these is to yield propositions I and II

below.

Lemma 1. Under the stochastic ordering conditions C1, for every fixed

v, Tl(r,v) is monotone in r with 0 < 2T1/ r < 1, and hence for fixed

v there is at most one solution to each of the equations,

(4) Tl(rv) = v,

(5) T1(sv) = s,

and for r* satisfying (4), Tl(rpv) < v for r < r*, and for s*

satisfying (5), Tl(r,v) > r for r < s*.

Iemma 2. Under C2 and with cT > 0, each of the equations (4) and

(5) in fact has at least one finite solution for every v.

Using lemas 1 and 2, and by inspection of Figure 1, we obtain

the following:



-9-

' T(rv*)

Tl(r,v*)

Case (i)
Case (ii)

* 0*
r r s

Figure 1

Lemma 3. Under CI and C2 and with cT > 0, either (i), there is an

interval Lr*,s*] (r* < s*) such that continuing is optimal given

R = r < r*, testing is optimal given R = re[r*,s*], and stopping with-

out testing is optimal given R=r > s*, or else (ii), there is no such

interval and for some point r(--v*), continuing is optimal given R-r < r°

and stopping without testing is optimal given R=r > r .

With Lemma 3 in mind, we easily derive the following:

Proposition I. Suppose that condition (i) of Lemma 3 obtains. hen v*,

together with r* and s*, must satisfy the system of equations 6,

(6) v = v(r) + fTl(t,v)f 1 (t)dt + Stf1 (t)dt - cS,
rs

(7) Tl(r,v) = v,

(8) Tl(s,v) = s,

together with the auxiliary condition r < s. Equation (6) merely

equates the expected return from continuing under any policy of the type

described under (i), expressed in two different ways. Equation (7) is

necessary for the optimal point r* in as much as from the continuity
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of Ti, and lemmas 1 and 2, there is a unique point where Tl(r,v*) = v*.

Similarly for equation (8). We note that if (i) fails, this system of

equations cannot be satisfied by the optimal expected return v* and is

meaningless.

A similar argument gives the following:

Proposition II. Under (ii), v* and r ° must satisfy the equations
o@

(9) v VF(r) = rtfl(t)dt-cs
1 r

and

(iO) v =r;

that is, v*(or r° ) must satisy

(9a) v = VF1(v)+ t 1 (t)dt-cs •

We are thus in a position to determine v* and the optimal policy

as well, except for two things, the possibility of non-uniqueness of the

solutions to the above systems of equations and the matter of knowing

whether or not (i) or (ii) obtains. Theorems 10 2, and 3 settle these

questions. The proofs of these theorems are given in Section 4 along with

the proof of the above lemmas.

Theorem 1. Under the stochastic ordering condition C1 there is at most

a single triple (v*,r*,s*) which simultaneously satisfies the system of

equations B with r < s.

Theorem 2. Equation (9a) has exactly one solution.

We note that regardless of whether or not (i) or (ii) obtains,

Theorem 2 insures that equation (9a) characterizes the optimal expected

return v in the class of policies in which testing is never permitted.
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Theorem 3. Under C1  and C2 and with cT > 0, condition i) of

Lemma 3 holds if and only if Tl(V0 ,v°) > v° where v°  is the unique

solution to equation (9a).

Theorem 3 provides that testing is optimal for some value of
0

r if and only if at r =v it is possible to do just as well as with

the best policy, say R0 , in the class which never permit testing, simply

by testing once and using R thereafter, for the best policy in this

class is in fact obtained from (9a), as we have seen.

To obtain the optimal policy in terms of the variables X and

Y, x*,y*, and x0 may be computed from r*,s*, and r0 , respectively,

using the transformation x(r). Alternatively, the system of equations

and (9) and (10), can be formulated and solved in terms of the vari-

ables X and Y directly, since the one-to-one character of the

transformation x(r) insures that the various uniqueness results given

above will carry over, as will the test for the form of the optimal

policy offered by Theorem 3.

4. Proofs

The function (3a) can be written in either of the forms

(u) T 1(r,v) - v + J(l-F1 (zlr)dz - cT
v

or

(12) Tl(r,v) = r + v Fl(zir)dz _ CT

These formulae may be verified by integrating by parts. Thus, for (11)

we find v + z(l - F1(zlr))Iv + f .fl(zlr)dz - CcT  To evaluate

±iz(1 - F1(zIr)) we use z(l - F1(zlr)) < J Ifzlr)dx - 0 as z-

AZ
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(since f xf1 (xlr)dx exists and is finite.) Equation (12) is verifiedcov CO
in a similar manner using the fact that r - f zf1 (zlr)dz + zf1 (zlr)dz.

e
Lemma 1. To prove Lemma 1, we find from (11) that

)T1/ar = - Jf / rFl(zLr)dz > 0, since under CI, o/rF1 (zir) < 0, and

v
from (12) that T1 /Jr = 1 + J /4rFl(zlr)dz < 1, for the same reason.

Thus, 0 < oT l/r < 1, as was to be shown.

Lemma 2. To prove Lemma 2, consider first equation (4). We need to show

that under C2, and if cT > 0, there is a solution to Tl(r,v).= v

for every fixed v. Inspection of (12) shows that for large positive

values of r, Tl(rv) will exceed v. For large negative values of r,

Tl(rv) will be below v. To see this, we choose the function 0 in

c2 corresponding to 83 satisfying Ivi 83 S cT/2 and 64 < cT/2, and

apply (lb) with r such that 0o = O(x(r)) <v. Then

Tl(r,v) . v + v(Fl(vlr)-l) + fJzfl(zir)dz - CT,
V

< v + ivlliFl¢ °lr)-ll + f I1'lfl(zlr)dz -CT

<_ v + cT/2+ c2 - cT = v,

From the continuity of T1  there must be an intermediate value of r

for which Tl(r,v) = v.

Similarly, for equation (5), TI(S,V) > v-c T > s for large

negative values of s. To show that Tl(sv) < s for large positive

values of s) the function a is chosen corresponding to 61,62 > 0

for which lvJ6 1 < cT/2 and 62 < cT/2, and then s is selected so

that O = c(x(s)) > v. Applying (1a),
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T 1(s~v) - vF1(vls) + s - f f± 1 (z~s)dz - c T

_ IvIlF 1(2°1s)l + s + IzIf 1 (Is)dz - cT

c/2 + s+ c /2 - cT = o

Theorem 1. To prove Theorem 1, we note that by virtue of Lemma 1, it is

only necessary to show that the system of equations (6), (7) and (8),

subject to r < s, has a single solution in v, since then by this

lemma r and s are uniquely determined. Let

(P(v) = v - [VF 1 (r) + rTl(t,v)f1 (t)dt + -tf1 (t)dt - S]S Sr s

so that (p(v) = 0 is equivalent to (6). Differentiating cp subject to

(7) and (8) we obtain

(p'(v) = 1 - [Fl(r) + vfl(r)r' + Tl(SV)fl(s)s'

- Tl(r,v)fl(r)r' + js/avT1 (t,v)-1 (t)dt

- sl(s)s'I],

and on using (7) and (8),

(v) - [Fl(r) + ra/avT1 (t,v)f1 (t)dt].
r

From (12) a'i/6 F(vlr), so that

9'(v) l - ( 1(r) + rF(vlt)f1 (t)dt].

r

But since r < s, 0 < JrF1 (vlt)f1(t)dt < F1(s) - F1 (r).

Thus,

0 < 1 - FI(s) <_ yl(v) < 1 - Fi(r) < 1

and cp(v) = 0 can only have one root.



Theorem 2. We may prove Theorem 2 in a similar way, by differentiating

(v) = v - [vF1(V) + S zfl(z)dz - cS]. This gives Y'(v) = 1 - F1 (v).

Hence 0 < Y'(v) < 1, and T(v) = 0 likewise only has one root. That

there is a root may be seen on integrating by parts as in (11) above.

Thus, Y(v)=-(l-F1 (x))dx- cs and Y(v) as v- -- , and

Y(v) - CS > 0 as v -+ -, so that (v) = 0 for some intermediate

value.

Theorem 3. To prove Theorem 3, consider first the sufficiery part. We

have to show that if Tl(v0 ,v°) >_ v° where v°  satisfies

v0= (v ° ) + j zf1 (z)dz - c., then there is at least one point r

such that if R=r the optimal policy permits testing. Clearly r r = v0

is such a point since testing at R-r 0  and then using the best policy

without testing yields T(v°,v ° ) and does at least as well as the latter

policS Which by Theorem 2 achieves exactly v° .

Now we show that if there is a point r such that if R=r testing

is optimal, then Tl(v 0 v° ) > v° . Let v* > v0 be the optimal expected

return. Since max [v*,r) can be achieved by using the best of the two

choices, continuing optimally or stopping, the hypothesis is that for

some r, Tl(r,v*):> max (v*,r). Since 0 < 6T1/&r < 1, this means that

T1(v*,v*) - v* > Tl(r,v*) - v* > 0 so that T1(V*,V*) >_ v*.

Now let Tl(r,v;c) = v(vlr) + 5 zfl(zir) - c; i.e., Tl(r,v;c)
v

is Tl(r,v) with CT = c indicated explicitely. Obviously T1(rv;c)

is strictly decreasing in c. Let (vcrcsc) be the solution of B

when cT = c. We have then, by the above remark, that T1 (Vcvc;) > vc

for v. = v*. Let c increase from the given value cT. Clearly,
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T1(vcv c;c) decreases with c, as does v c, but from continuity

considerations it is easily shown that at some point, say c 0> CT

we will have

( 1 4 ) T ( v 0, v 0 ; ) = v 0
c c c

This means c0 = s 0 and these are all equal to v0, for on
C C a

substituting v 0 = r 0 = s 0 in (6), (7) and (8) (read Tl(r,v;c)
c c c

instead of T1(r,v)), (6) reduces to (9a), hence is satisfied by

v o = v0, and (7) and (8) are satisfied, by application of (14).
c

Moreover, this solution, v = r = a v is unique by Theorem 1.
C C c

Thus we have Tl(v°,V;c) =v°. But c < c° hence Tl(V°,V0 ;CT)_ v

as was to be shown.

5. Selecting Many Possibilities

In this section, we will mention two possible applications of

the model to related problems in which there is a cost constraint, and

many possibilities are to be selected rather than just a single possibility

as in Section 2. Concrete situations in which these problems might arise

are to be found in the area of personnel selection and in connection with

various biological selection problems, for example, drug screening.

Problem 1. From a very large population of possibilities, it

is desired to select a fixed number N using a two stage testing

procedure. The first test of a given possibility costs cS . In order to

apply the model, it is assumed the first'test must be applied to each

possibility. If the second test is used, it costs cT . A measure of

"true" worth W for the possibilities has a known (apriori) distribution
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in the population of possibilities, and the regression of W on the

outcome of the first test, and on the outcome of the first and second

test combined, as well as the joint distribution of these regressions,

is known. The possibilities are taken at random from the population

and considered for selection one after another. The first test is applied

to each possibility, and after the outcome of the first test is known, the

possibility is either selected, rejected, or given the second test and

then either selected or rejected. The process is to be stopped as soon

as N possibilities are selected. The problem is to select the N

possibilities in such a manner as to make their expected total worth as

high as possible, subject to the constraint that the total testing cost

does not exceed a given testing budget C.

We cannot solve this problem exactly. However, we can determine

the policy which does well in items of the expected worth of the N pos-

sibilities selected, subject to the constraint that the expected total

testing cost is at most C.. This policy has the advantage of being fixed;

that is, the same procedure is applied to each possibility, and if N is

large, say, forty or more, the actual cost of the policy will with high

probability not deviate from C by more than a small percentage amount

and the constraint will be approximately met. We need to assume that

C > Nc0  in order for the approximate solution to make sense.
S

Consider the problem of selecting a single object as described

in Section 2, identifying X with the outcome of the first test, Y with

the outcome of the first and second test combined, and V with the

measure of worth W. However, instead of identifying the cost c S with
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c and cT with c0 directly, we introduce a multiplier X and with
S T

hypothetical costs c = XcS  and cT = XCT, solve the optimization

problem which consists of selecting a single possibility in such a manner

as to maximize expected net return. This gives rise to an optinal policy

depending on X, say r(%). Associated with this lolicy will be its

expected actual cost, say Ec(X) and the expected worth of the single

possibility selected, say Ev(X). We now determine X so that Ec(k) = C/N

and select N possibilities using this policy repeatedly. It is assumed

that such a X exists and is positive. The expected total cost will then

be C. The actual total cost in a specific instance will be the sum of N

independent, identically distributed random variables, and we are assured

by the strong law of large numbers that the ratio of the total cost to the

expected cost approaches unity as N increases.

Now let Ev i and Eci, i=l,2,...N, be the expected return and

expected cost, respectively, for selecting the ith possibility using any

other procedure. We have

(15) Ev(X) - XEc(X) > Ev i - XEci

N
by the optimality of r(X), and if E~ Ec < C, and X > 0, we have

N i=l i
NEv(%) > iEEvi as required.

Problem 2. Suppose the situation is as in problem 1, with two

stages of testing possible at costs c0 > 0 and c0 > 0, respectively,
S T

for the first and second tests. However, the requirement is to make the

total expected worth of the possibilities selected as large as possible

given a fixed budget, the number actually selected being unrestricted,

Thus, the outcome will be random number N of random worths corresponding
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to the possibilities selected. For large C, we can determine a

"fixed" policy (see above) whose total cost is approximately C and

does approximately as well as any other fixed policy.

As in problem 1, we first determine the optimal policy for a

single search and evaluation problem with hypothetical costs cS = XcS

and cT = Xc0, but now X is chosen so that Ev(X) - XEc(X) = 0,

where, as in problem 1, Ev(X) is the expected value of the single

possibility selected using the optimal policy r(X) for that value of

X, and Ec(X) is the expected actual cost using this policy. Thus,

in the hypothetical problem, X is to be chosen so that v* of Section 2

is zero. Since the model assumes positive costs, we suppose there is a

positive X which has this property.

The proposed policy consists of using r() over and over again

until the testing budget C is exhausted, it being permitted, however, to

use r() to complete selection of the last possibility even if the budget

is exceeded while this is being done, but, of course, no new selections are

started. Let r' be a given policy for selecting a single possibility and

suppose the expected cost Ec' of the use of the policy is less than a

given constant c* and the variance of the cost, a 2c', is less than a

2
constant a . Consider the class of policies formed by repeated use of

any such policy r', with Ec' < c* and a 2c < 2, until the budget is

exhausted in the above sense, that is, with selection of the possibility

underway at the time the budget is exceeded being completed using r'. The

proposed policy is approximately optimal in this class, in that for C

sufficiently large, the proposed policy is almost certain to achieve a

high proportion of the return of any element of the class. The proof of
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this will be outlined, a number of technical details being omitted.4

For a given policy r' with Ec' < c* for selecting a

single possibility, let Ev' be the expected worth of the possibility

selected under this policy. We have, then, by tle optimality of r(X)

in the hypothetical problem and by the choice of X, that

(16) 0 = Ev(X) - XEc(X) > Ev' - XEc'.

If C is large relative to Ec(x), repeated use of r(X) until the

budget is exhausted, implies, by virtue of the law of large numbers,

the number N of selections actually made will be large. Thus, we will

have C -- cl + c2 + ... C 0 NEc(X), where co ... co are the random

total costs incurred in making the N selections; more precisely, it can

be shown that for some 61 whose absolute value is small relative to C

with high probability, we will have NEc(%) = C + 61. Similarly, exhaust-

ing C by repeated use of any other policy r' means that for C

sufficiently large, the corresponding number N' of selections will be

large with high probability -- provided the policy has finite expected cost

for selection a single possibility so that the law of large numbers may be

applied. In fact, we will have N'Ec' = C + 62  for some 62 which with

high probability will have small absolute value relative to C for all r'

2 2
such that Ec' < c* and a c' < C2 . Now, N'(Ev' - XEc') < 0 by (16),

so N'Ev' < XN'Ec' = X(C+82). Again, by (16), NEvo,) = XNEc(X) = XCC+6

4 The interested reader can find the essential technical details worked
out in Western Management Science Institute Working Paper No. 4, "Sequences
of time variable games," available on request from the author.
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so that N'Ev' < NEv(X) 6 1 + X62 . The order of magnitude of the quantity

-X61 + ?62 is independent of N and the ratio of hEv(X) to N'Ev' will

in fact .converge almost surely to a number a < 1 as C -.

6. Computation of the Optimal Policy

The writer has been unable to find any interesting case where

solutions to the system (B can be obtained in terms of elementary func-

tions. Of course, the equations may be solved by numerical procedures in

a specific instance. Some remarks on the computational problem in the

case of the normal distribution5 are perhaps in order:

If X,Y, and V in Section 2 have a joint normal distribution,

it turns out that after making the obvious linear transformations, there

are only three essential parameters in the model, of which two are the

costs cS and cT' As was pointed out in Section 2, the distribution of

X and the conditional distribution of the random variable Z = E(VIX,Y),

are all that count. These have a joint normal distribution which involves

five parameters, the means and variances of X and Z and, say, their

correlation, p. Choice of scale and origin for X and Z (or V), which

are arbitrary in the model, eliminates the means and variances. For

practical purposes, then, the computational problem reduces to 
tabling6

5Relevant tables as indicated below are being prepared for the case of the
normal distribution.

Using such tables, the problem of locating the multiplier X referred to
in problems 1 and 2 of Section 5 is easily solved by trial and error,
entering the table with cS = Xcs and cT -XcT until a value of X is

located such that the optimal expected cost (problem 1) or the optimal
expected net return (problem 2) has the required property.



-21-

the optimal constants v*,x*,y*, and v °, and the expected costs under

the optimal policy, as a function of cS,cT, and p. Of course, a number

of other parameterizations are possible.

The joint normal distribution for X,Y, and V arises in the

situation where V has a known (apriori) normal distribution and the

decision maker is allowed to observe as the outcome of search a variable

§ equal to V plus an error independent of V, while if he tests he is

allowed to observe a variable I equal to V plus another error inde-

pendent of V, the two errors leaving a known joint normal distribution.

Here we may identify § with X and T with Y.

This situation may be interpreted by saying the decision maker

learns about each V through a noisey channel, having the option to learn

more, at a cost, by using another noisey channel.

Another similar case giving rise to a joint normal distribution

is where V is the mean of a normal population, the population being

selected from a family of normal populations, all with the same variance,

in such a manner that V has itself a normal distribution. When a

population is selected for consideration, a sample of n1  independent

observations on the population is first made. Further testing, if carried

out, results in another sample of n2 independent observations. Here X

may be taken to be the mean of the first sample and Y to be the mean of the

second sample.
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